Design, Synthesis, and Anticancer Activity of Amide Derivatives of Structurally Modified Combretastatin-A4

V. Ragha Suma^{*a,b*}, R. Sreenivasulu^{*c*}, M. Subramanyam^{*d*}, and K. Ram Mohan Rao^{*e**}

 ^a Department of Chemistry, GITAM Institute of Science, Gandhi Institute of Technology and Management, (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045 India
^b Department of Chemistry, Government Degree and PG College, Bhadrachalam, Telangana, 507111 India

^c Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, 533003 India

^dDepartment of Chemistry, SR and BGNR Govt. Arts and Science College (Autonomous),

Khammam, Telangana, 507002 India

^eDepartment of Chemistry, GITAM Institute of Technology, Gandhi Institute of Technology and Management, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045 India *e-mail: rammohanrao.k@gmail.com

Received December 10, 2018; revised March 13, 2019; accepted March 15, 2019

Abstract—A new series of amide derivatives of structurally modified combretastatin-A4 **10a–10j** are synthesized, and their structures are confirmed by ¹H and ¹³C NMR, and mass spectral data. The products are tested for their anticancer activity towards human cancer cell lines, MCF-7 (breast), A-549 (lung), Colo-205 (colon), and A-2780 (ovarian). The compounds **10b**, **10c**, and **10d** demonstrate the most promising activity.

Keywords: combretastatin-A4, cefozopram, 1,2,4-thiadiazoles, anticancer activity **DOI:** 10.1134/S1070363219030228

INTRODUCTION

A vast number of heterocyclic derivatives were employed efficiently in anticancer chemotherapy [1-6]. Combretastatin-A4 (1), (see the figure) was isolated from South African tree Combretum caffrumin [7, 8]. It demonstrated high antitumor activity [9, 10] and acted as vascular disrupting agent (VDA) [11]. Combretastatin-A4 has poor water solubility, high lipophilicity and was easily converted into inactive trans-isomer which made its activity lower [12, 13]. Because of stability problems, many researcher have developed double bond restricted combretastatin derivatives based on triazoles, pyrazoles, thiazoles, furanones, imidazoles, and oxazolones [14-16]. Similarly, 1,2,4-thiadiazole derivatives act as useful units in medicinal chemistry [17] and demonstrate a broad spectrum of biological activities including human leukemia [18], antidiabetic [19], antihypertensive [20], allosteric modulators [21], antibacterial [22], and many more. The FDA approved antibiotic cefozopram (2) [23] contains the 1,2,4thiadiazole unit.

Due to the potent biological activities of combretastin-A4 and 1,2,4-thiadiazole derivatives, we have synthesized a series of structurally modified amide derivatives that combine combretastatin-A4 and 1,2,4thiadiazole **10a–10j**. Their structures were confirmed by ¹H and ¹³C NMR, and mass spectral data. The derivatives were tested for their activity against human cancer cell lines.

RESULTS AND DISCUSSION

The first step of synthesis of new amide derivatives of combretastatin-A4 (Scheme 1) was condensation of commercially available trimethoxyphenyl acetonitrile (3) with 4-methoxybenzaldehyde (4) in presence of TEA which gave the intermediate 5. Its following cyclization with 4-nitrobenzothioamide (6) in presence of AlCl₃ led to compound 7. The nitro group of the precursor 7 was reduced by zinc dust into the corresponding amine 8. Coupling reaction of the letter compound 8 with a variety of substituted benzoyl chlorides 9a–9j in presence of TEA resulted in formation of the corresponding target compounds 10a–10j.

Structures of (a) Combretastatin-A4 (1) and (b) Cefozopram (2).

In vitro cytotoxicity. All synthesized derivatives 10a-10j were tested for their anticancer activity against four types of human cancer cell lines, MCF-7 (breast), A-549 (lung), Colo-205 (colon), and A-2780 (ovarian) by the MTT assay method (see the table). Combretatstatin-A4 was used as a positive control. Most of the derivatives demonstrated moderate activity, among those the compounds 10b, 10c, 10d, 10h, 10i, and 10j exhibited very high activity. The preliminary analysis of structure-activity relationships (SARs) showed that compound 10b containing three electro-donating methoxy substituents in positions 3, 4 and 5 on the phenyl ring demonstrated more potent activity than the positive control. The 3.5dimethoxyphenyl containing analogue 10c exhibited lower activity than the product 10b. Along the same line, the product **10d** containing only one methoxy

Anticancer activity of newly syr	thesized compounds 10a	1–10j [°]		
Compound	IC ₅₀ , μM			
	A-549 ^b	MCF-7 ^c	A-375 ^d	HT-29 ^e
10a	2.870±1.7700	3.450±2.5500	Not active	6.23±3.440
10b	0.011±0.0030	0.023 ± 0.0070	0.120±0.0120	1.78±0.380
10c	0.020 ± 0.0054	0.041 ± 0.0031	0.670±0.0300	1.90±0.440
10d	0.054 ± 0.0043	0.077 ± 0.0090	1.330±0.8200	Not active
10e	2.090 ± 1.8800	2.650±1.5500	7.230±4.7600	10.40±5.790
10f	2.110±1.9300	2.170±1.3400	4.500±3.2200	No active
10g	3.450±2.0900	3.000±1.9900	5.120±3.6800	9.34±5.290
10h	1.440±0.6600	1.200 ± 0.0560	0.330±0.0480	5.13±3.730
10i	0.540 ± 0.0410	1.650±0.990	1.100±0.0320	2.99±1.560
10j	0.060 ± 0.0012	0.013±0.0088	0.098 ± 0.0078	Not active

Δ

Combretastatin-A4

group on the phenyl ring exhibited even lower activity than compounds **10b** and **10c**. The compound **10i** with 4-methyl group demonstrated moderate activity. Interestingly, compound 10j with the electron-withdrawing 4-cyano group on the phenyl ring exhibited very good activity. The corresponding 3,5-dinitro analogue was characterized by moderate activity.

EXPERIMENTAL

All chemicals were obtained from Aldrich (Sigma-Aldrich, St. Louis, MO, USA), Lancaster (Alfa Aesar, Johnson Matthey Company, Ward Hill, MA, USA) and used without further purification. Reactions progress was monitored by TLC, performed on silica gel glass plates containing 60 F-254, and visualized by UV light or iodine indicator. ¹H and ¹³C NMR spectra

Each data represents as mean ±S.D values. From three different experiments performed in triplicates. ^b (A-549) human lung cancer cell line. ° (MCF-7) human breast cancer cell line. d (A-375) human melanoma cancer cell line. e (HT-29) human colon cancer cell line.

 0.180 ± 0.0210

 0.110 ± 0.0200

0.210±0.0290

0.93±0.034